425 research outputs found

    A Rejection Principle for Sequential Tests of Multiple Hypotheses Controlling Familywise Error Rates

    Full text link
    We present a unifying approach to multiple testing procedures for sequential (or streaming) data by giving sufficient conditions for a sequential multiple testing procedure to control the familywise error rate (FWER), extending to the sequential domain the work of Goeman and Solari (2010) who accomplished this for fixed sample size procedures. Together we call these conditions the "rejection principle for sequential tests," which we then apply to some existing sequential multiple testing procedures to give simplified understanding of their FWER control. Next the principle is applied to derive two new sequential multiple testing procedures with provable FWER control, one for testing hypotheses in order and another for closed testing. Examples of these new procedures are given by applying them to a chromosome aberration data set and to finding the maximum safe dose of a treatment

    Sequential Tests of Multiple Hypotheses Controlling Type I and II Familywise Error Rates

    Full text link
    This paper addresses the following general scenario: A scientist wishes to perform a battery of experiments, each generating a sequential stream of data, to investigate some phenomenon. The scientist would like to control the overall error rate in order to draw statistically-valid conclusions from each experiment, while being as efficient as possible. The between-stream data may differ in distribution and dimension but also may be highly correlated, even duplicated exactly in some cases. Treating each experiment as a hypothesis test and adopting the familywise error rate (FWER) metric, we give a procedure that sequentially tests each hypothesis while controlling both the type I and II FWERs regardless of the between-stream correlation, and only requires arbitrary sequential test statistics that control the error rates for a given stream in isolation. The proposed procedure, which we call the sequential Holm procedure because of its inspiration from Holm's (1979) seminal fixed-sample procedure, shows simultaneous savings in expected sample size and less conservative error control relative to fixed sample, sequential Bonferroni, and other recently proposed sequential procedures in a simulation study

    RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nanointerface for Impedance-Monitoring Cell Behaviors

    Get PDF
    A new biomimetic nanointerface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nanocomposites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO’s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nanocomposites were demonstrated as a potential biomimetic nanointerface for monitoring cell biobehaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nanomaterials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro

    Suppressing STAT3 activation impairs bone formation during maxillary expansion and relapse

    Get PDF
    Objectives: The mid-palatal expansion technique is commonly used to correct maxillary constriction in dental clinics. However, there is a tendency for it to relapse, and the key molecules responsible for modulating bone formation remain elusive. Thus, this study aimed to investigate whether signal transducer and activator of transcription 3 (STAT3) activation contributes to osteoblast-mediated bone formation during palatal expansion and relapse. Methodology: In total, 30 male Wistar rats were randomly allocated into Ctrl (control), E (expansion only), and E+Stattic (expansion plus STAT3-inhibitor, Stattic) groups. Micro-computed tomography, micromorphology staining, and immunohistochemistry of the mid-palatal suture were performed on days 7 and 14. In vitro cyclic tensile stress (10% magnitude, 0.5 Hz frequency, and 24 h duration) was applied to rat primary osteoblasts and Stattic was administered for STAT3 inhibition. The role of STAT3 in mechanical loading-induced osteoblasts was confirmed by alkaline phosphatase (ALP), alizarin red staining, and western blots. Results: The E group showed greater arch width than the E+Stattic group after expansion. The differences between the two groups remained significant after relapse. We found active bone formation in the E group with increased expression of ALP, COL-I, and Runx2, although the expression of osteogenesis-related factors was downregulated in the E+stattic group. After STAT3 inhibition, expansive force-induced bone resorption was attenuated, as TRAP staining demonstrated. Furthermore, the administration of Stattic in vitro partially suppressed tensile stress-enhanced osteogenic markers in osteoblasts. Conclusions: STAT3 inactivation reduced osteoblast-mediated bone formation during palatal expansion and post-expansion relapse, thus it may be a potential therapeutic target to treat force-induced bone formation

    Real-world outcomes associated with poly(ADP-ribose) polymerase inhibitor monotherapy maintenance in patients with primary advanced ovarian cancer

    Get PDF
    OBJECTIVE: This study used real-world population data to assess the trends of first-line (1L) poly(ADP-ribose) polymerase inhibitor (PARPi) maintenance treatment uptake and outcomes in patients with primary advanced ovarian cancer (AOC). METHODS: Patients diagnosed with AOC between January 1, 2017, and June 30, 2021, who completed 1L chemotherapy were selected from a real-world database. Descriptive analyses were performed to evaluate patient demographics, clinicopathological characteristics, and 1L treatment patterns. Time to next treatment or death was used as a proxy for real-world progression-free survival (rwPFS). Kaplan-Meier methods and Cox models were used for statistical analyses. RESULTS: Of 705 patients who completed 1L chemotherapy, 166 received PARPi monotherapy and 539 underwent active surveillance (AS). Median follow-up was 10.9 months for PARPi monotherapy and 20.6 months for AS. PARPi monotherapy use increased from 6% in 2017 to 53% in 2021. Overall, patients receiving PARPi monotherapy had longer rwPFS than those who underwent AS (not reached vs 9.53 mo) respectively. rwPFS was also longer in patients who received PARPi monotherapy compared with AS in patients with BRCA- mutated disease (not reached vs 11.4 mo), BRCA- wild-type disease (13.5 vs 9.1 mo), homologous recombination-deficient tumors (not reached vs 10.2 mo), and homologous recombination-proficient or unknown status tumors (13.5 vs 9.3 mo). CONCLUSIONS: Our real-world analysis suggested that 47% of patients with primary AOC did not receive PARPi maintenance in the year 2021. PARPi use was associated with significantly improved outcomes compared with AS

    Controlled released naringin-loaded liposome/sucrose acetate isobutyrate hybrid depot for osteogenesis in vitro and in vivo

    Get PDF
    Introduction: A common problem in bone tissue engineering is that the burst release of active osteogenic factors is not beneficial for osteogenesis. This study aimed to prepare naringin (Ng) liposomes to reduce the burst release of Ng and improve new bone formation.Methods: We synthesized Ng liposomes using the thin-film hydration method. Drug-encapsulation efficacy experiments were conducted using the ultracentrifugation technique. The morphology and size distributions of freezedried liposomes were determined by transmission electron microscopy and dynamic light scattering. The Ng liposomes and Ng-lipo/sucrose acetate isobutyrate (SAIB) depots were characterized using Fourier transform infrared spectroscopy and in vitro release studies. After implantation of the Ng-lipo/SAIB depots, in vitro osteoblast-liposome interactions and in vivo osteogenesis were tested.Results: The formulation of freeze-dried Ng liposomes via an optimized recipe yielded nanosized (136.9 nm) negatively charged particles with a high encapsulation efficiency (~76.3%). Their chemical structure did not change after adding SAIB to the Ng liposomes. The burst release was reduced dramatically from 74.4% to 23.7%. In vivo, after 8 weeks, the new bone formation rate in the calvarial defects of Sprague-Dawley rats receiving Ng-lipo/SAIB was 57% compared with 25.18% in the control group (p = .0003).Discussion: Our results suggested that Ng-lipo/SAIB hybrid depots could serve as candidate materials for drug delivery in bone regeneration applications

    Exploration of the hypoglycemic mechanism of Fuzhuan brick tea based on integrating global metabolomics and network pharmacology analysis

    Get PDF
    Introduction: Fuzhuan brick tea (FBT) is a worldwide popular beverage which has the appreciable potential in regulating glycometabolism. However, the reports on the hypoglycemic mechanism of FBT remain limited.Methods: In this study, the hypoglycemic effect of FBT was evaluated in a pharmacological experiment based on Kunming mice. Global metabolomics and network pharmacology were combined to discover the potential target metabolites and genes. In addition, the real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed for verification.Results: Seven potential target metabolites and six potential target genes were screened using the integrated approach. After RT-qPCR analysis, it was found that the mRNA expression of VEGFA, KDR, MAPK14, and PPARA showed significant differences between normal and diabetes mellitus mice, with a retracement after FBT treatment.Conclusion: These results indicated that the hypoglycemic effect of FBT was associated with its anti-inflammatory activities and regulation of lipid metabolism disorders. The exploration of the hypoglycemic mechanism of FBT would be meaningful for its further application and development

    Effects of TGF- β

    Get PDF
    Introduction. This study aimed to explore the effects of TGF-β1 on regulating activities of cementoblasts and osteoblasts with or without stress. Material and Methods. Human recombinant TGF-β1 was added with different doses. Immunohistochemical test of osteoprotegerin (OPG)/receptor activator of nuclear factor-kappaB ligand (RANKL) and Alizarin Red-S staining were conducted. Mechanical compressive stress was obtained by increasing the pressure of gaseous phase. OPG/RANKL expression was detected in both cells through quantitative real-time PCR. Results. Similar significant differences (P<0.05) existed in OPG/RANKL change with increasing concentration of TGF-β1 without mechanical stress for cementoblasts and osteoblasts. However, under 3 h stress, OPG increased and RANKL decreased significantly (P<0.01) but with similar OPG/RANKL change. Moreover, under 24 h stress, OPG change exhibited no difference (P>0.05), but RANKL decreased significantly (P<0.01) at 10 and 100 ng/mL TGF-β1 in cementoblasts. In osteoblasts, OPG increased significantly (P<0.01) at 10 and 100 ng/mL, whereas RANKL decreased with statistical difference (P<0.05) at 1 and 10 ng/mL. Conclusions. The effects of TGF-β1 on OPG/RANKL expression of cementoblasts and osteoblasts are similar even without mechanical stress. However, these effects are different under mechanical compressive stress

    Human Hepatocytes with Drug Metabolic Function Induced from Fibroblasts by Lineage Reprogramming

    Get PDF
    SummaryObtaining fully functional cell types is a major challenge for drug discovery and regenerative medicine. Currently, a fundamental solution to this key problem is still lacking. Here, we show that functional human induced hepatocytes (hiHeps) can be generated from fibroblasts by overexpressing the hepatic fate conversion factors HNF1A, HNF4A, and HNF6 along with the maturation factors ATF5, PROX1, and CEBPA. hiHeps express a spectrum of phase I and II drug-metabolizing enzymes and phase III drug transporters. Importantly, the metabolic activities of CYP3A4, CYP1A2, CYP2B6, CYP2C9, and CYP2C19 are comparable between hiHeps and freshly isolated primary human hepatocytes. Transplanted hiHeps repopulate up to 30% of the livers of Tet-uPA/Rag2−/−/γc−/− mice and secrete more than 300 μg/ml human ALBUMIN in vivo. Our data demonstrate that human hepatocytes with drug metabolic function can be generated by lineage reprogramming, thus providing a cell resource for pharmaceutical applications
    • …
    corecore